Resumen
El mieloma múltiple (MM) es una neoplasia B post centro germinal caracterizada por la proliferación clonal de células plasmáticas en la médula ósea y la detección de una inmunoglobulina monoclonal en suero u orina, la proteína M. Se origina a partir de un proceso de transformación de múltiples pasos con acumulación progresiva de eventos genéticos que favorecen la proliferación y expansión del clon maligno. A nivel citogenético se observan anomalías primarias, directamente relacionadas con la patogénesis de la enfermedad, y secundarias, que incluyen ganancias y pérdidas de material genético, que aportan información de valor pronóstico adicional. Las anomalías primarias permiten dividir a los pacientes en dos grandes grupos: hiperdiploides, con ganancia de cromosomas, considerados de buen pronóstico, y no-hiperdiploides, con número modal variable, asociados a mala evolución clínica. Las anomalías secundarias incluyen: deleción 13q14/monosomía del cromosoma 13, deleción 17p13, alteraciones del cromosoma 1, específicamente ganancia/amplificación del brazo largo (1q21) y deleciones del brazo corto (1p), así como también rearreglos del gen MYC (8q24). Un nuevo subgrupo lo constituyen los MM doble hit que incluyen pacientes con: a) inactivación bialélica de TP53 (deleción en un alelo y mutación en el otro) y, b) estadio clínico ISS III con amplificación de 1q21 (≥4 copias), asociados a muy mal pronóstico. Una anomalía de reciente descripción es la inactivación bialélica del gen BCMA (B cell maturation antigen) (16p13.13), que constituye un mecanismo de recaída/resistencia al tratamiento anti-BCMA CAR T-cells, siendo importante su detección en pacientes pasibles de ser incorporados a estos esquemas terapéuticos. Sin duda, la profundización de la caracterización biológica del MM resulta de fundamental importancia en el marco de una medicina traslacional, contribuyendo a un mejor diagnóstico y/o pronóstico, y aportando información para nuevos abordajes terapéuticos.
Citas
Seer Cancer Statistics Review. Seer Cancer Statistics Review. Bethesda, MD: National Cancer Institute. 2018. Available online at: https://seer.cancer.gov/csr/1975_2015/
Colunga-Pedraza PR, Gómez-Cruz GB, Colunga-Pedraza JE, Ruiz-Argüelles GJ. Geographic hematology: Some observations in Mexico. Acta Haematol 2018;140:114-20.
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011;364:1046-60.
Fonseca R, Bergsagel PL, Drach J y col. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23:2210- 21.
Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer 2012;12:335-48.
Corre J, Munshi N, Avet-Loiseau H. Genetics of multiple myeloma: another heterogeneity level? Blood 2015;125:1870-6.
Kumar SK, Rajkumar SV. The multiple myelomas - current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol 2018;15:409-21.
Soekojo CY, Wang C-M, Chen Y y col. Role of conventional karyotyping in multiple myeloma in the era of modern treatment and FISH analysis. Clin Lymph Myeloma Leuk 2019;19:e470-7.
Stella F, Pedrazzini E, Agazzoni M, Ballester O, Slavutsky I. Cytogenetic alterations in multiple myeloma: Prognostic significance and the choice of frontline therapy. Cancer Invest 2015;27:1-9.
Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification, and management. Am J Hematol 2020;95:548-67.
Sidana S, Jevremovic D, Ketterling RP y col. Tetraploidy is associated with poor prognosis at diagnosis in multiple myeloma. Am J Hematol 2019;94:e117-20.
Manier S, Salem KZ, Park J y col. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 2017;14:100-3.
Chretien ML, Corre J, Lauwers-Cances V y col. Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter? Blood 2015;126:2713-9.
Kumar S, Fonseca R, Ketterling RP y col. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 2012;119:2100-5.
Perrot A, Lauwers-Cances V, Tournay E y col. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol 2019; 37:1657-65.
Corre J, Munshi NC, Avet-Loiseau H. Risk factors in multiple myeloma: is it time for a revision? Blood 2021;137:16-9.
Pawlyn C, Melchor L, Murison A y col. Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations. Blood 2015;125:831-40.
Weinhold N, Kirn D, Seckinger A y col. Concomitant gain of 1q21 and MYC translocation define a poor prognostic subgroup of hyperdiploid multiple myeloma. Haematologica 2016;101:e116-9.
Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J 2015;5:e365.
Kuehl WM, Bergsagel PL. Molecular Pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 2012;122:3456-63.
An G, Xu Y, Shi L y col. t(11;14) Multiple myeloma: A subtype associated with distinct immunological features, immunophenotypic characteristics but divergent outcome. Leuk Res 2013;37:1251-7.
Garand R, Avet-Loiseau H, Accard F, Moreau P, Harousseau JL, Bataille R. t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma. Leukemia 2003;17:2032-5.
Avet-Loiseau H, Garand R, Lod´e L y col. Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. Blood 2003;101:1570-1.
Robillard N, Avet-Loiseau H, Garand R y col. CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood 2003;102:1070-1.
Hundemer M, Klein U, Hose D y col. Lack of CD56 expression on myeloma cells is not a marker for poor prognosis in patients treated by high-dose chemotherapy and is associated with translocation t(11;14). Bone Marrow Transplant 2007;40:1033-7.
Slomp A, Peperzak V. Role and regulation of pro-survival BCL-2 proteins in multiple myeloma. Front Oncol 2018;8:533.
Touzeau C, Maciag P, Amiot M, Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 2018;32:1899-907.
Lakshman A, Alhaj Moustafa M, Rajkumar SV y col. Natural history of t(11;14) multiple myeloma. Leukemia 2018;32:131-8.
Paner A, Patel P, Dhakal B y col. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev 2019;41:100643.
Chesi M, Nardini E, Lim R, Smith K, Kuehl W, Bergsagel P. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998;92:3025-34.
Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 2003;101:2374-6.
Keats JJ, Reiman T, Maxwell CA y col. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003;101:1520-9.
Keats JJ, Maxwell CA, Taylor BJ y col. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16; q32)-positive multiple myeloma patients. Blood 2005;105:4060-9.
Marango J, Shimoyama M, Nishio H y col. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2008;111: 3145-54.
Pei H, Zhang L, Luo K y col. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 2011;470:124-8.
Wu SP, Pfeiffer RM, Ahn IE y col. Impact of genes highly correlated with MMSET myeloma on the survival of non-MMSET myeloma patients. Clin Cancer Res 2016;22: 4039-44.
Moreau P, Attal M, Garban F y col. Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials. Leukemia 2007;21:20204.
Lazareth A, Song X-Y, Coquin A y col. MB4-2 breakpoint in MMSET combined with del(17p) defines a subset of t(4;14) multiple myeloma with very poor prognosis. Haematologica 2015;100:e471-4.
Du Ch, Mao X, Xu Y y col. 1q21 Gain but not t(4;14) indicates inferior outcomes in multiple myeloma treated with bortezomib. Leuk Lymphoma 2020;61:1201-10.
Kataoka K, Fujiwara KT, Noda M, Nishizawa M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 1994;14:7581-91.
Nishizawa M, Kataoka K, Vogt PK. MafA has strong cell transforming ability but is a weak transactivator. Oncogene 2003;22:7882-90.
Van Stralen E, van de Wetering M, Agnelli L, Neri A, Clevers HC, Bast BJ. Identification of primary MAFB target genes in multiple myeloma. Exp Hematol 2009;37:78-86.
Hurt EM, Wiestner A, Rosenwald A y col. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5:191-9.
Zhan F, Huang Y, Colla S y col. The molecular classification of multiple myeloma. Blood 2006;108:2020-8.
Jenner MW, Leone PE, Walker BA y col. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 2007;110:3291-300.
Walker BA, Wardell CP, Johnson DC y col. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood 2013;121:3413-9.
Narita T, Inagaki A, Kobayashi T y col. t(14;16)-positive multiple myeloma shows negativity for CD56 expression and unfavorable outcome even in the era of novel drugs. Blood Cancer J 2015;5:e285.
Mina R, Joseph NS, Gay F y col. Clinical features and survival of multiple myeloma patients harboring t(14;16) in the era of novel agents. Blood Cancer J 2020;10:40.
Ross FM, Chiecchio L, Dagrada GP y col. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 2010;95:1221-5.
Kaufmann H, Ackermann J, Baldia C y col. Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia 2004;18:1879-82.
Avet-Louseau H, Daviet A, Sauner S, Bataille R. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol 2000;111:1116-7.
Shaughnessy J Jr, Tian E, Sawyer J y col. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol 2003;120:44-52.
Binder M, Rajkumar SV, Ketterling RP y col. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J 2017;7:e600.
Chavan SS, He J, Tytarenko R y col. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J 2017;7:1-7.
Xiong W, Wu X, Starnes S y col. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 2008;112:4235-46.
Jovanovic KK, Escure G, Demonchy J y col. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol 2019;8:665.
Palumbo A, Avet-Loiseau H, Oliva S y col. Revised International Staging System for Multiple Myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015;33:2863-9.
Chang H, Sloan S, Li D, Keith Stewart A. Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions. Br J Haematol 2004;127: 280-4.
Chang H, Qi C, Yi QL, Reece D, Keith Stewart A. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005;105:358-60.
Tiedemann RE, Gonzalez-Paz N, Kyle RA y col. Genetic aberrations and survival in plasma cell leukemia. Leukemia 2008;22:1044-52.
Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 2005;10 (Suppl. 1): 117-26.
Hanamura I, Stewart JP, Huang Y y col. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006;108:1724-32.
Chang H, X Qi, A Jiang y col. 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transp 2010;45:117-21.
Boyd KD, Ross FM, Walker BA y col. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res 2011;17:7776-84.
Zhan F, Colla S, Wu X y col. CKS1B, over expressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1- dependent and independent mechanisms. Blood 2007;109:4995-5001.
Stella F, Pedrazzini E, Baialardo E, Fantl DB, Schutz N, Slavutsky I. Quantitative analysis of CKS1B mRNA expression and copy number gain in patients with plasma cell disorders. Blood Cells Mol Dis 2014;53:110-7.
Fonseca R, Van Wier SA, Chng WJ y col. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 2006;20:2034-40.
Grzasko N, Hus M, Pluta A y col. Additional genetic abnormalities significantly worsen poor prognosis associated with 1q21 amplification in multiple myeloma patients. Hematol Oncol 2013;31:41-8.
Sawyer JR, Tricot G, Lukacs JL y col. Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chromosome Cancer 2005;42:95-106.
Teoh PJ, An O, Chung T-H y col. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 2018;132:1304-17.
Teoh PJ, Chung T-H, Chng PYZ, Toh SHM, Chng WJ. IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification. Haematologica 2020;105:1391-404.
Lazzari E, Mondala PK, Delos Santos N y col. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat Commun 2017;8:1922.
Chapman MA, Lawrence MS, Keats JJ y col. Initial genome sequencing and analysis of multiple myeloma. Nature 2011;471:467-72.
Kulkarni MS, Daggett JL, Bender TP, Kuehl WM, Bergsagel PL, Williams ME. Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis. Leukemia 2002;16:127-34.
Leone PE, Walker BA, Jenner MW y col. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res 2011;14:6033-41.
Hebraud B, Leleu X, Lauwers-Cances V y col. Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia 2014;28:675-9.
Dickens NJ, Walker BA, Leone PE y col. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clin Cancer Res 2010;16:1856-64.
Chng WJ, Huang GF, Chung TH y col. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011;25:1026-35.
Chiecchio L, Dagrada GP, White HE y col. Frequent upregulation of MYC in plasma cell leukemia. Genes Chromosome Cancer 2009;48:624-36.
Walker BA, Wardell CP, Brioli A y col. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J 2014;4:e191-7.
Møller HEH, Preiss BS, Pedersen P y col. Myc protein overexpression is a feature of progression and adverse prognosis in multiple myeloma. Eur J Haematol 2018;101:585-90.
Dang CV. MYC on the path to cancer. Cell 2012;149:22-35.
Dib A, Gabrea A, Glebov OK y col. Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr 2008;39:25-31.
Chesi M, Bergsagel PL. Advances in the pathogenesis and diagnosis of multiple myeloma. Int J Lab Hematol 2015;37(S1):108-14.
Guash LG, Zurita S, Lannutti L, Pantuso F, Slavutsky I, Stella F. Evaluación de desbalances genómicos en desórdenes de células plasmáticas. Rev Inv Científicas Univ de Morón 2020;7:33-46.
Rabani H, Ziv M, Lavi N y col. Deletions and amplifications of the IGH variable and constant regions:a novel prognostic parameter in patients with multiple myeloma. Leuk Res 2020;99:106476.
Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 2020;34:985-1005.
Da Vià MC, Dietrich O, Truger M y col. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nature Med 2021;27:616-9
Samur MK, Fulciniti M, Samur AA y col. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nature Comm 2021; 12:868.
Stella F, Pedrazzini E, Rodríguez A y col. New recurrent chromosome alterations in patients with multiple myeloma and plasma cell leukemia. Cytogenet Genom Res 2011;134: 249-59.
Walker BA, Mavrommatis K, Wardell CP y col. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019;33:159-70.
Ashby C, Tytarenko RG, Wang Y y col. Poor overall survival in hyperhaploid multiple myeloma is defined by double-hit bi-allelic inactivation of TP53. Oncotarget 2019;10:732-7.
Peterson JF, Rowsey RA, Marcou CA y col. Hyperhaploid plasma cell myeloma characterized by poor outcome and monosomy 17 with frequently co-occurring TP53 mutations. Blood Cancer J 2019;9:20.
Sawyer JR, Tian E, Shaughnessy JD Jr y col. Hyperhaploidy is a novel high- risk cytogenetic subgroup in multiple myeloma. Leukemia 2017;31:637-44
Hoctor VT, Campbell LJ. Hyperhaploid plasma cell myeloma. Cancer Genet 2012;205:414-8.
Mandahl N, Johansson B, Mertens F, Mitelman F. Disease-associated patterns of disomic chromosomes in hyperhaploid neoplasms. Genes Chromosome Cancer 2012;51:536- 44.
Todo el material publicado en la revista Hematología (versión electrónica y versión impresa), será cedido a la Sociedad Argentina de Hematología. De conformidad con la ley de derecho de autor (ley 11723) se les enviara a los autores de cada trabajo aceptado formulario de cesión de derechos de autor que deberá ser firmado por todos los autores antes de la publicación. Los autores deberán retener una copia del original pues la revista, no acepta responsabilidad por daños o pérdidas del material enviado. Los autores deberán remitir una versión electrónica al correo: revista@sah.org.ar
